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Enveloping Algebras.

Let L be a finite dimensional semisimple Lie algebra over field
k = C. Any Cartan subalgebra h of L gives rise to a unique
triangular decomposition

L = n− ⊕ h⊕ n+.

Disjoint bases of n+, n−, and h consisting of elements labeled
respectively as e′s, f ′s, and h′s add up to a basis B of L. The
universal enveloping algebra of L is the algebra

U = U(L) = k < B > /(xy − yx − [x , y ] : x , y ∈ B).

It has a PBW-basis

U = Span{f ahbec | a, c ∈ N|n
±|,b ∈ N|h|=n=rank(L)}.

It is a Noetherian domain with center Z ∼= S(h).
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Classical Results on Prime/Primitive Ideals

1 P ∈ Spec (U) ⇒ P ∩ Z ∈ Spec (Z ).(Dixmier, 70’s)
2 J ∈ Spec (Z ) ⇒ JU ∈ Spec (U). (Dixmier, 70’s)
3 clK dim Z = n (Chevalley/Gelfand), clK dim U = 2n. (open)
4 P ∈ Spec (U) is primitive iff P ∩ Z ∈ Max (Z ). (Dix., 70’s)
5 Conversely, J ∈ Max (Z )⇒ LJ(U) = {I C U | I ∩ Z = J}

is a finite set. (Dixmier) These are the annihilators of the
simple subquotients of the principal series. Their
description given by A. Joseph for sl3 and sp4, open for
higher rank.

6 LJ(U) ∩ Prim(U) described by Borho and Jantzen (1977)
using orbit method.

7 Theory extended to the quantum case in the 90’s by A.
Joseph and many others.
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The Enveloping Algebra U(sl3).

Lie algebra L = sl3 over field k = C has a basis

B = {e12,e23,e13,e11 − e22,e22 − e33,e21,e32,e31}

and a triangular decomposition L = n− ⊕ h⊕ n+, where

n+ = Span{e1 = e12,e2 = e23,e3 = e13}
n− = Span{f1 = e21, f2 = e32, f3 = e31}
h = Span{h1 = e11 − e22,h2 = e22 − e33}.

The center Z of its universal enveloping algebra U = U(sl3) is
the polynomial algebra Z = k [z1, z2], where

z1 = −h2
1 − h1h2 − h2

2 − 3(h1 + h2)− 3(f1e1 + f2e2 + f3e3)

z2 = −(−2h1 − h2 − 3)(h1 − h2)(h1 + 2h2 + 3) + other terms.
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Prime and Primitive Ideals of U(sl3)

Consider the central subset Ω = {Ωm | m ≥ 1}, where

Ωm = z2
2 + (z1 + 3m2 − 3)2(4z1 + 3m2 − 12).

As Spec(U) =
⋃

J∈Spec(Z ) SpecJ(U), the prime ideals of U
classify according to the following possible cases:

Prime non-primitive ideals of U (J ∈ Spec(Z )−Max(Z ))

SpecJ(U) =

{
{JU} , if J ∩ Ω = ∅
{JU, IΩm} , if J ∩ Ω = {Ωm}.

Primitive ideals of U (J ∈ Max(Z ))

SpecJ(U) =


{JU} , if J ∩ Ω = ∅
{JU, IΩm + JU} , if J ∩ Ω = {Ωm}
{JU,A,B,A + B} , if J ∩ Ω = {Ωm,Ωn,Ωm+n}.
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U(sl3)-Results

1 Completely prime primitive ideals were listed by J. Dixmier
in 1975.

2 Primitive ideals were listed by W. Borho and J. C. Jantzen
(1977) as part of the general semi-simple case, and
independently by A. Joseph for sl3.

3 Lattice Krull dimension of U(sl3) computed by T. Levasseur
in 1985.

4 Prime ideals IΩm we listed by W. Soergel in 1990, using the
orbit method.

5 All prime ideals of U were listed by generators as both
ideals and adjoint modules in [C], (2000).
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Work of A. Joseph

Let V be a finite dimensional irreducible L-module. Then
J = annU(V ) ∩ Z ∈ Max(Z ) (Dixmier, 1970)
Lattice LJ(U) = {I C U | I ∩ Z = J} is finite. (Dixmier)
For L = sl3, the lattices LJ(U) were described by A.
Joseph in 1977 as follows:

LJ(U) =

{
SpecJ(U), |J ∩ Ω| < 2
SpecJ(U) ∪ {(A ∩ B)2,AB,BA,A ∩ B}, |J ∩ Ω| ≥ 2.

The elements of LJ(U) are the annihilators of the simple
subquotients of the principal series.
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Connection to Previous Work

With the adjoint structure of elements of SpecJ(U) being
described in our previous paper (C, 2000), the goal is to
give a similar description for the remaining ideals

(A ∩ B)2,AB,BA,A ∩ B when |J ∩ Ω| = 2,3,

that is, when A + B is the annihilator of a finite dimensional
irreducible module.
The work for AB and BA is non-trivial. Giving their adjoint
structure amounts to splitting tensor products of irreducible
sl3-modules as sums of irreducibles.
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General Setting

The general theory looks at the relationship

"Ideals of U" vs. "Ideals of Z = CU(L) = CU(b = h⊕ n+)”.

We look at the relationship

"Ideals of U" vs. "Ideals of R = CU(n+)”.

This algebra R has two important properties:
R is the linear span of all highest weight elements of U
under the adjoint action.
Any ideal I of U is an adjoint submodule, hence generated
as a module by its highest weight elements. Write this as

I = [I ∩ R].

Stefan Catoiu Ideals of the enveloping algebra of U(sl3)



Introduction
Motivation

Details
Main Result

General Setting

General Setting

The general theory looks at the relationship

"Ideals of U" vs. "Ideals of Z = CU(L) = CU(b = h⊕ n+)”.

We look at the relationship

"Ideals of U" vs. "Ideals of R = CU(n+)”.

This algebra R has two important properties:
R is the linear span of all highest weight elements of U
under the adjoint action.
Any ideal I of U is an adjoint submodule, hence generated
as a module by its highest weight elements. Write this as

I = [I ∩ R].

Stefan Catoiu Ideals of the enveloping algebra of U(sl3)



Introduction
Motivation

Details
Main Result

General Setting

General Setting

The general theory looks at the relationship

"Ideals of U" vs. "Ideals of Z = CU(L) = CU(b = h⊕ n+)”.

We look at the relationship

"Ideals of U" vs. "Ideals of R = CU(n+)”.

This algebra R has two important properties:
R is the linear span of all highest weight elements of U
under the adjoint action.
Any ideal I of U is an adjoint submodule, hence generated
as a module by its highest weight elements. Write this as

I = [I ∩ R].

Stefan Catoiu Ideals of the enveloping algebra of U(sl3)



Introduction
Motivation

Details
Main Result

General Setting

Generators and Relations for R

R = k [z1, z2, x1, x2][ζ, ζ, σ, σ−1]/(rels),

where
x1 = e3 , x2 = e3(h1 − h2)− 3e1e2,

ζ = e2
3f2 − e2

1e2 + e1e3h2,

ζ = e2
3f1 − e1e2

2 − e2e3(h1 − 2).

Variables ζ, ζ commute with x1 and skew-commute with x2 as

ζx2 = (x2 + 3x1)ζ , ζx2 = (x2 − 3x1)ζ.

If D = k [z1, z2, x1, x2], then σ ∈ Aut(D) is identity on z1, z2, x1
and σ(x2) = x2 + 3x1.
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A Generalized Weyl Algebra

In addition,

27ζζ = x3
1 z2 + 3x2

1 x2(z1 − 3) + x3
2 = a ∈ D,

27ζζ = x3
1 (z2 + 9z1) + 3x2

1 x2(z1 + 6) + 9x1x2
2 + x3

2 = σ(a)

This makes R into a degree 1 generalized Weyl algebra.
Generalized Weyl algebras were introduced by V. V. Bavula
in 1992. It is a larger class of algebras that include U(sl2)
and Uq(sl2), down-up algebras of G. Benkart and T. Roby,
some ambiskew polynomial algebras of D. A. Jordan,
Woronowicz and Witten algebras, etc.. They were
extended to the twisted case by V. Mazorchuk and L.
Turowska.
GWA have nice properties like any product of ideals is
commutative, and any ideal is uniquely a product of primes.
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Adjoint Generating Ideals

If I C U, then I ∩ R C R. And since R is a GWA, we have

I ∩ R =

(
⊕
∞∑

t=0

ζ t It

)
⊕

(
⊕
∞∑

t=1

I tζ
t
)
,

where
...I2 ⊇ I1 ⊇ I0 ⊆ I1 ⊆ I2...

are ideals of D = k [z1, z2, x1, x2]. In our case, I ∩ Z = J is
maximal in Z . We mod out by J, and without loss, we may
assume that the above is a chain of ideals in S = k [x1, x2].
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Notation

Let Vpq be the f. d. irred. adjoint module of weight (p,q). Then
AnnU(Vpq) = A + B.
If p ≤ q, then m = p + 1 and n = q − p, and (A + B) ∩ Z =
J = (z1 + 3m2 + 3mn + n2 − 3, z2 − n(3m + n)(3m + 2n)).
Define λ = −3m − n + 3, µ = −n + 3, and polynomials

Pr
s =

{ ∏s−1
i=0 [x2 + (r + 3i)x1], s > 0

1, s ≤ 0.
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Main Theorem

Theorem

With the above notation and C = (A ∩ B)2 = AB ∩ BA, for t ≥ 0,
we have

It (A) = I t (A) = Pλ
m−tS.

It (B) = I t (B) = Pµ
m+n−tS.

It (A + B) = I t (A + B) = Pλ
m−tS + Pµ

m+n−tS.

It (A ∩ B) = I t (A ∩ B) = Pλ
m−tP

µ
m+n−tS.

It (C) = I t (C) = Pµ
2m+n−tS.

It (AB) = It (A ∩ B) and I t (AB) = I t (C).
It (BA) = It (C), and I t (BA) = I t (A ∩ B)
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